为了在煤化工等行业的高盐废水零排放处理过程中,更好地选用和设计适宜的分盐结晶工艺,提高结晶盐的资源化效率,降低综合处理成本,首先介绍了高盐废水分盐结晶工艺各种典型技术路线,再结合特定煤化工案例,讨论了2种代表性的热法和膜法技术路线的分盐结晶工艺设计,并对其进行了定量的技术经济对比分析。
结果表明,相较于热法分盐结晶工艺,纳滤-低温结晶膜法分盐工艺的投资虽然增加约30%,但其结晶盐产品的回收率提高37.8个百分点,在杂盐固废的处置成本为1000元/t时,综合运行成本节省约30%,技术经济性上具有一定优势,且这一优势随杂盐固废处置成本的升高而增强。
高盐废水一般是指盐度显著高于常规地表水或普通生产生活用水盐度的废水。典型的高盐废水包括循环冷却塔排污水、反渗透系统浓水以及其他工艺过程产生的盐度较高的废水。根据来源不同,高盐废水的实际盐度通常在3 000~50 000 mg /L,甚至更高的范围。
高盐废水的产生由来已久,特别是随着脱盐技术在原水处理和废水回用领域日益广泛的应用,其产生量正在不断增加。另一方面,环保法规的不断加码对高盐废水的处理处置提出了更高的要求。这一情况在我国煤化工行业体现得尤为突出。
由于我国水资源与煤炭资源呈逆向分布,现代煤化工项目多建设在内蒙古、宁夏、陕西、新疆等水资源短缺和生态脆弱的地区,这些地区由于缺乏纳污水体和环境容量,高盐废水的零排放处理成为了必然选择。
国家环保部于2015 年发布了《现代煤化工建设项目环境准入条件( 试行) 》,其中明确规定,缺乏纳污水体区域应对高盐废水采取有效处置措施,不得污染地下水、大气、土壤等。高盐废水的零排放处理工艺一般包括预处理、膜浓缩、蒸发结晶等典型步骤。
我国早期的高盐废水零排放处理项目对无机盐的资源化考虑不多,一般在蒸发结晶段产生的是混合杂盐。结晶杂盐遇水易溶解,且通常含有有机物甚至重金属,难以作为普通固废处置,即使以高昂代价作为危废处置,由于其产量极大,一般的危废处置中心也难以消纳。因此,高盐废水零排放处理过程中结晶盐的资源化势在必行。
高盐废水分盐结晶工艺是实现废水零排放结晶盐资源化的技术基础。国家能源局于2017年发布的《煤炭深加工产业示范“十三五”规划》也明确要求,无纳污水体的新建示范项目通过利用结晶分盐等技术,将高盐废水资源化利用。
由于高盐废水分盐结晶的技术需求近年来才逐渐明朗,其工业应用更是处于起步阶段,因此具有针对性的研究还不充分。虽然有学者从相图和工艺等方面研究了热法分盐结晶工艺,有学者从纳滤膜在高盐废水处理过程中的分盐特性等方面研究了膜法分盐结晶工艺,但各种分盐结晶路线的适用性和技术经济性比较研究在文献中鲜有报道。
鉴于此,笔者首先介绍高盐废水分盐结晶工艺的各种典型技术路线,并通过特定煤化工高盐废水案例讨论2 种代表性技术路线的分盐结晶工艺设计,进而对其进行技术经济对比分析,以期为工业应用提供有益参考。
1 分盐结晶工艺
煤化工等高盐废水中分盐结晶过程的分离对象主要是氯化钠和硫酸钠。这是因为废水中的阴离子通常以氯离子和硫酸根离子占绝大多数,一价阳离子则以钠离子为主,二价阳离子经过一系列处理后,也已经在化学软化或离子交换等过程置换成了钠离子。
分盐结晶工艺主要有2种思路: 一是直接利用废水中不同无机盐的浓度差异和溶解度差异,通过在结晶过程中控制合适的运行温度和浓缩倍数等来实现盐的分离,即通常所说的热法分盐结晶工艺; 二是利用氯离子和硫酸根离子的离子半径或电荷特性等的差异,通过膜分离过程在结晶之前实现不同盐之间的分离或富集,再用热法结晶过程得到固体,即膜法分盐结晶工艺。
1.1 热法分盐结晶工艺
高盐废水的热法分盐结晶工艺主要包括直接蒸发结晶工艺、盐硝联产分盐结晶工艺和低温结晶工艺。